Prediction of asphaltene precipitation using support vector regression tuned with genetic algorithms
نویسندگان
چکیده
منابع مشابه
PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کاملApplication of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation
Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...
متن کاملSupport vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملThe Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression
Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...
متن کاملVolatility modelling and prediction by hybrid support vector regression with chaotic genetic algorithms
In this paper, a new econometric model of volatility is proposed using hybrid Support Vector machine for Regression (SVR) combined with Chaotic Genetic Algorithm (CGA) to fit conditional mean and then conditional variance of stock market returns. The CGA, integrated by chaotic optimization algorithm with Genetic Algorithm (GA), is used to overcome premature local optimum in determining three hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Petroleum
سال: 2016
ISSN: 2405-6561
DOI: 10.1016/j.petlm.2016.05.006